Go to home
Back
4
2

wine-quality

:

Use the Pull Tag button to download this ModelKit.

Or, read our KitOps documentation to learn how to use kit unpack --filter to download only the components you need.

ModelKit Tag Metadata
Digest
Author
N/A
Date added
Size
2.9MB
Total pulls
2
Package
Name
white-wine-quality-predictor
Version
1.0
Authors
N/A
Description
Predict the quality of white wine
Model
Name
white-wine-xgb
Path
model/model.pkl
License
Apache 2.0
Parts
N/A
Parameters
{ "run_info": { "run_id": "611dd98a4fbc42f78c20c559337f8202", "run_name": "industrious-loon-433", "artifact_uri": "mlflow-artifacts:/693112939931118568/611dd98a4fbc42f78c20c559337f8202/artifacts", "experiment_id": "693112939931118568" }, "result_info": { "metrics": { "score": 0.6499690785405071, "roc_auc": 0.8302286512800172, "f1_score": 0.6408572999870976, "log_loss": 0.9028615945319611, "recall_score": 0.6499690785405071, "example_count": 1617, "accuracy_score": 0.6499690785405071, "precision_score": 0.6526749219675065 } }, "best_hyperparameters": { "max_depth": 10, "n_estimators": 50, "learning_rate": 0.1 } }
Datasets
white-wine-quality.csv
data/white-wine-quality.csv
Codebases
demo.py
ModelKit integration with MLflow
requirements.txt
Python dependencies
Docs
README.md
Model card
LICENSE
License file
artifacts/confusion_matrix.png
Image from experiment run industrious-loon-433
artifacts/roc_curve_plot.png
Image from experiment run industrious-loon-433
artifacts/precision_recall_curve_plot.png
Image from experiment run industrious-loon-433
artifacts/per_class_metrics.csv
Image from experiment run industrious-loon-433
artifacts/shap_beeswarm_plot.png
Image from experiment run industrious-loon-433
artifacts/shap_feature_importance_plot.png
Image from experiment run industrious-loon-433
artifacts/shap_summary_plot.png
Image from experiment run industrious-loon-433